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Bilevel Optimization and
Hyper-gradient



Standard formulation

Bilevel Optimization (BiO)

min
x∈X

f (x, y⋆)

s.t. y⋆ ∈ argmin
y∈Y

g(x, y)

The nested structure couples the upper level and lower level

X Y

min
x∈X

f(x, y∗)

min
y∈Y

g(x, y)
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Applications

Model selection [Kunapuli et al., 2008; Giovannelli et al., 2021]

Hyper-parameters optimization [Franceschi et al., 2018; Bao et al., 2021]

Data poisoning [Liu et al., 2024]

Reinforcement learning [Hong et al., 2023; Chakraborty et al., 2024; Shen et
al., 2024]

· · ·
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Three visits to hyper-gradient

Recall the BiO problem
min

x∈Rdx
ϕ(x) := f (x, y⋆(x))

s.t. y⋆(x) = argmin
y∈Rdy

g(x, y)

How to study the hyper-gradient ∇ϕ?
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Approximate implicit differentia tion (AID)

Scenario of interest: g(x, ·) is strongly convex

y∗(x) = argmin
y∈Rdy

g(x, y)

By optimality condition & implicit function theorem

0 ≡ ∇yg(x, y∗(x))⇒ ∇2
xyg(x, y∗(x)) +∇xy∗(x)⊤∇2

yyg(x, y∗(x)) = 0

Hyper-gradient computation
∇ϕ(x) := ∇f (x, y⋆(x))

= ∇xf (x, y⋆(x)) +∇xy⋆(x)⊤∇yf (x, y⋆(x))

= ∇xf (x, y⋆)−∇2
xyg (x, y⋆)

[
∇2

yyg (x, y⋆)
]−1
∇yf (x, y⋆)

Vanilla update rule

1× : x+ = x− β

(
∇xf (x, y)−∇2

xyg (x, y)
[
∇2

yyg (x, y)
]−1
∇yf (x, y)

)
N× : y+ = y− α∇yg (x, y)
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First visit to hyper-gradient

Geometry

Rdx Rdy

yx
∇y∗

y∗

f(x, y)

Algebra

∇ϕ(x) = ∇xf (x, y⋆)−∇2
xyg (x, y⋆)

[
∇2

yyg (x, y⋆)
]−1
∇yf (x, y⋆)
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Bilevel Reinforcement Learning



Reinforcement learning (RL)

Agents learn to make sequential decisions, by interacting with environments

Silver et al., 2016
Nature

Samvelyan et al., 2019
DeepMind

Degrave et al., 2022
Nature
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Markov decision process (MDP)

Agent

Environment

action
at ∼ π (·|st)

next state
st+1 ∼ P (·|st, at)

reward rt

state
st

• EnvironmentMτ = (S,A,P, r, γ, τ)
• State space S , action space A
• Transition matrix P ∈ R|S||A|×|S|

• Reward function r ∈ R|S||A|

• Policy π ∈ R|S||A|, which induces Pπ ∈ R|S|×|S|: Pπ
ss′ =

∑
a πsaPsas′
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Soft value function and Q-value function

s0 s1 s2 s3 · · · s7

a0

r0

a1

r1

a2

r2

∀s ∈ S : Vπ
s : = E

[
∞∑

t=0
γt (rstat + τh(πst))

∣∣∣ s0 = s, π,Mτ

]
∀(s, a) ∈ S ×A : Qπ

sa : = rsa + γEs′∼P(·|s,a) [Vπ
s′ ]

Given the initial state distribution ρ, RL aims to solve

max
π

Vπ(ρ) := Es∼ρ [Vπ
s ]

= E

[
∞∑

t=0
γt (rstat + τh(πst))

∣∣∣ s0 ∼ ρ, π,Mτ

]
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Two scenarios

Agent

Environment
P

ii

knownunknown

Model-basedModel-free
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Bilevel RL formulation

Parameterized MDP: Mτ (x) = (S,A,P, r(x), γ, τ)

Quantities in bilevel context

∀s ∈ S : Vπ
s (x) : = E

[
∞∑

t=0
γt (rstat(x) + τh(πst))

∣∣∣ s0 = s, π,Mτ (x)
]

∀(s, a) ∈ S ×A : Qπ
sa(x) : = rsa(x) + γEs′∼P(·|s,a) [Vπ

s′(x)]

Bilevel RL problem

min
x∈Rn

ϕ(x) := f (x, π∗(x))

s. t. π∗(x) = argmin
π

−Vπ
Mτ (x) (ρ)
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Applications of bilevel RL

Reward shaping [Hu et al., 2020; Devidze et al., 2022]

min
x
−Vπ∗(x)

M̄τ̄
(ρ̄) , s. t. π∗ (x) = argmin

π∈∆|A|
−Vπ

Mτ (x) (ρ)

RL from human feedback (RLHF) [Christiano et al., 2017]

min
x

Ey,d1,d2∼ρ(d;π∗(x)) [lh (d1, d2, y; x)]

s. t. π∗ (x) = argmin
π

−Vπ
Mτ (x) (ρ)

- Trajectory sampled by π∗(x): di = {
(
si

h, ai
h
)
}H−1

h=0 (i = 1, 2)
- Preference for d1 over d2: y ∈ {0, 1}

More applications

- Apprenticeship learning [Arora and Doshi, 2021]

- Contract design [Wu et al., 2024]

- Robot navigation [Chakraborty et al., 2024]
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Motivation and challenge

Problem formulation

min
x∈Rn

ϕ(x) := f (x, π∗(x))

s. t. π∗(x) = argmin
π

−Vπ
Mτ (x) (ρ)

where Vπ
Mτ (x)(ρ) = E

[∑∞
t=0 γ

t (rstat(x) + τh(πst))
∣∣∣ s0 ∼ ρ, π,Mτ (x)

]

Main difficulties

• Lower-level inherent non-convexity [Agarwal et al., 2020; Lan, 2023 MP]

• Only the non-uniform PL condition [Mei et al., 2020]

• Existence of hyper-gradient ∇ϕ(x)? [Shen et al., 2024]
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Related works

Related work

• An AID-based bilevel RL framework, PARL [Chakraborty et al., ICLR 2024]

• A penalty-based method, PBRL [Shen et al., ICML 2024]

• A stochastic bilevel RL method, HPGD [Thoma et al., NeurIPS 2024]

Comparison among provable bilevel RL algorithms

Algorithm Deter. or Stoch. Conv. Rate Inner Iter. Oracle

PARL Deter. O(ϵ−1) O
(
log ϵ−1) 1st+2nd

PBRL Deter. O(λϵ−1) O
(
log λ2ϵ−1) 1st

HPGD Stoch. O(ϵ−2) O
(
log ϵ−1) 1st

M-SoBiRL Deter. O(ϵ−1) O (1) 1st
SoBiRL Deter. O(ϵ−1) O

(
log ϵ−1) 1st

Stoc-SoBiRL Stoch. Õ(ϵ−1.5) O
(
log ϵ−1) 1st
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Model-based Soft BiRL



The fixed-point equation

Revisit the strong convexity requirement in AID

• Unique lower-level solution =⇒ y∗(x)
• Nonsingular Hessian =⇒∇y∗(x)

Softmax temporal value consistency [Nachum et al., 2017]

∀(s, a) ∈ S ×A : π∗
sa(x) = exp

(
τ−1

(
rsa (x) + γ

∑
s′

Psas′V∗
s′ (x)−V∗

s (x)
))

∀s ∈ S : V∗
s (x) = τ log

(∑
a

exp

( rsa (x) + γ
∑

s′ Psas′V∗
s′ (x)

τ

))
Take the derivative

∇π∗(x) = τ−1diag (π∗(x)) (∇r(x)−U∇V∗ (x))

How to tackle ∇V∗(x)?
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Investigating ∇V∗(x)

Consider the parameterized mapping φ : Rn × R|S| 7→ R|S|

φ(x, v) = τ log

(
exp

(
r(x) + γPv

τ

)
· 1
)

• Take the derivative
∂φs (x, v)

∂vs′
= γ

∑
a Psas′ exp

(
τ−1 (rsa (x) + γ

∑
s′′ Psas′′vs′′

))∑
a exp

(
τ−1

(
rsa (x) + γ

∑
s′′ Psas′′vs′′

))

‖∇vφ(x, v)‖∞ = γ < 1 =⇒ unique solution V∗(x)

• Differentiate both sides of φ(x,V∗(x)) = V∗(x)

∇V∗(x) = (I−∇vφ(x,V∗(x)))−1∇xφ(x,V∗(x))

An observation in MDP ∇vφ (x,V∗(x)) = γPπ∗(x)
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Designing the model-based algorithm

Model-based hyper-gradient

∇ϕ(x) = ∇xf(x, π∗(x)) +∇π∗(x)⊤∇πf(x, π∗(x))
= ∇xf(x, π∗(x)) + τ−1 (∇r(x)−U∇V∗ (x))⊤ diag (π∗(x))∇πf(x, π∗(x))
= ∇xf(x, π∗(x)) + τ−1∇r(x)⊤ diag (π∗(x))∇πf(x, π∗(x))

− τ−1∇xφ (x,V∗(x))⊤
(

I− γPπ∗(x)
)−⊤

U⊤ diag (π∗(x))∇πf(x, π∗(x))

Computing ∇ϕ(x) is expensive!

Inexact strategy

• V∗
k := V∗(xk)←− Vk Q∗

k := Q∗(xk)←− Qk π∗
k := π∗(xk)←− πk

• A−1
k bk ←− wk with Ak := (I− γPπk)⊤ bk := U⊤ diag (πk)∇πf(xk, πk)
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Amortization and approximation

Model-based hyper-gradient estimator

∇̂ϕ (xk, πk,Vk,wk) := ∇xf (xk, πk) +
1
τ
∇r(xk)

⊤ diag (πk)∇πf(xk, πk)

− 1
τ
∇xφ(xk,Vk)

⊤wk

Soft Bellman operator solves lower-level problem

TMτ (x)(Q)(s, a) = rsa(x) + γ E
s′∼P(·|s,a)

[
τ log

(∥∥exp (Q (s′, ·) /τ)∥∥1

)]
Softmax temporal value consistency points to V and π

V∗
s (x) = τ log

(∑
a
exp (Q∗

sa (x) /τ)
)

π∗
sa(x) =

exp {Q∗
sa (x) /τ}∑

a′ exp
(
Q∗

sa′ (x) /τ
)

Least squared perspective

wk ≈ min
w∈R|S|

1
2 ‖Akw− bk‖2
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Model-based bilevel RL algorithm: M-SoBiRL

M-SoBiRL

1× : wk = wk−1 − ξ
((

A⊤
k Ak

)
wk−1 −A⊤

k bk

)
1× : Vk (s) = τ log

(∑
a
exp (Qk (s, a) /τ)

)
1× : xk+1 = xk − β∇̂ϕ (xk, πk,Vk,wk)

N× : Qk,n = TMτ (xk+1)(Qk,n−1)

1× : πk+1 = softmax (Qk+1/τ)
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Model-free Soft BiRL



Model-free bilevel RL

Problem formulation

min
x∈Rn

ϕ(x) := f (x, π∗(x))

s. t. π∗(x) = argmin
π

−Vπ
Mτ (x) (ρ)

with f (x, π) = Edi∼ρ(d;π) [l (d1, d2, ..., dI; x)]

Main difficulties

∇ϕ(x) = ∇xf(x, π∗(x)) + τ−1∇r(x)⊤ diag (π∗(x))∇πf(x, π∗(x))

− τ−1∇xφ (x,V∗(x))⊤
(

I− γPπ∗(x)
)−⊤

U⊤ diag (π∗(x))∇πf(x, π∗(x))

/ Relying explicitly on the black-box P
/ Involving large-scale matrix multiplications
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Absorb P into an expectation

∇V∗
s (x) = (I−∇vφ (x,V∗(x)))−1

s ∇xφ (x,V∗ (x))

=

∞∑
t=0

γt∑
s′

P
(
st = s′|s0 = s, π∗ (x)

)∑
a
∇rs′a (x)π∗

s′a (x)

=
∞∑

t=0
γt∑

s′,a

P
(
st = s′, at = a|s0 = s, π∗ (x)

)
∇rs′a (x)

= E

[
∞∑

t=0
γt∇xrstat (x) |s0 = s, π∗ (x) ,Mτ (x)

]

, Estimate via fully first-order information!
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Circumvent complicated matrix computations

Hyper-objective
ϕ(x) = Edi∼ρ(d;π∗(x)) [l (d1, d2, ..., dI; x)]

=
∑

(d1,...,dI)

l (d1, d2, ..., dI; x)ΠI
i=1P (di;π

∗ (x))

Consistency condition

∀(s, a) ∈ S ×A : π∗
sa(x) = exp

(
τ−1 (Q∗

sa (x)−V∗
s (x))

)
Log probability trick∑

(d1,...,dI)

l (d1, d2, ..., dI; x)∇ΠI
i=1P (di;π

∗ (x))

= Edi∼ρ(d;π∗(x))

[
l (d1, d2, ..., dI; x)∇

(∑
i

logP (di;π
∗ (x))

)]

= τ−1Edi∼ρ(d;π∗(x))

[
l (d1, d2, ..., dI; x)

(∑
i

∑
h

∇
(

Q∗
si

hai
h
(x)− V∗

si
hai

h
(x)
))]
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Second visit to hyper-gradient

Model-free hyper-gradient

∇ϕ(x) = Edi∼ρ(d;π∗(x)) [∇l (d1, d2, ..., dI; x)]

+ τ−1Edi∼ρ(d;π∗(x))

[
l (d1, d2, ..., dI; x)

(∑
i

∑
h

∇
(

Q∗
si

hai
h
(x)− V∗

si
h
(x)
))]

, Estimate ∇ϕ(x) via sampling first-order information!

Review the hyper-gradient

∇f(x, π) ∇ϕ(x)
specific structure of RL

general AID
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Construction of estimators

Step 1: evaluating the implicit differentiations

∇̃Vs(xk, πk) = E

[
∞∑

t=0
γt∇rst,at(xk)

∣∣∣ s0 = s, πk,Mτ (xk)

]

∇̃Qsa(xk, πk) = E

[
∞∑

t=0
γt∇rst,at(xk)

∣∣∣ s0 = s, a0 = a, πk,Mτ (xk)

]

Step 2: absorbing them into the sampling process

∇̃ϕ(xk, πk) = Edi∼ρ(d;πk) [∇l (d1, d2, ..., dI; xk)]

+ τ−1Edi∼ρ(d;πk)

[
l (d1, d2, ..., dI; xk)

(∑
i

∑
h

∇̃
(

Qsi
hai

h
−Vsi

h

)
(xk, πk)

)]
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Model-free Soft BiRL algorithm: SoBiRL

Algorithm SoBiRL
Input: iteration number K, step size β, initialization x1, π0, accuracy ϵ
1: for k = 1, . . . ,K do
2: Solve the lower-level problem approximately with initial guess πk−1 to

get πk such that ‖πk − π∗(xk)‖2
2 ≤ ϵ

3: Compute the approximate hyper-gradient ∇̃ϕ(xk, πk)

4: Implement an inexact hyper-gradient descent step
xk+1 = xk − β∇̃ϕ(xk, πk)

5: end for
Output: (xK+1, πK+1)

/ Sampling process introduces stochasticity

25
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Stochastic extension

Main adaptation

• Characterize the bias and variance

• Replace ∇̃ϕ with its stochastic counterpart

∇̄ϕ (Dk, ξk, ζk; xk, πk) =
1
M

M∑
m=1
∇l (dm

k ; xk)

+
1
τM

M∑
m=1

l (dm
k ; xk)

∑
i

∑
h

∇̄
(

Qξk
sm,i

h am,i
h
−Vζk

sm,i
h

)
(xk, πk)

• Maintain a momentum-instructed hk for acceleration

hk = ∇̄ϕk + (1− µk)
(
hk−1 − ∇̄ϕ(Dk, ξk, ζk; xk−1, πk−1)

)

/ Misalignment: distribution of (Dk, ξk, ζk) relies on πk
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Theoretical Analysis



Assumptions

Upper-level assumptions

• (Model-based) ∇f(x, π) is Lf-Lipschitz, and ‖∇πf(x, π∗(x)‖2 ≤ Cfπ

• (Model-free) l(d1, d2, . . . , dI; x) is Ll-Lipschitz, ∇l(d1, d2, . . . , dI; x) is
Ll1-Lipschitz, and |l (d1, d2, . . . , dI; x)| ≤ Cl.

Lower-level assumptions

• For any (s, a) ∈ S ×A, |rsa(x)| ≤ Cr, ‖∇rsa(x)‖2 ≤ Crx, and ∇rsa(x) is
Lr-Lipschitz

, Only require first-order regularity!
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Convergence analysis (model-based)

Theorem (model-based)
In M-SoBiRL, with constant step sizes β, ξ, and the inner iteration
number N ∼ O(1), the iterates {xk} satisfy

1
K

K∑
k=1

∥∇ϕ(xk)∥2
2 = O

(
1
K

)
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Development of hyper-gradient

Proposition (hyper-gradient)
For any s ∈ S , a ∈ A, and x1, x2 ∈ Rn,

‖∇Q∗
sa(x1)−∇Q∗

sa(x2)‖2 ≤ LV1 ‖x1 − x2‖2

‖∇V∗
s (x1)−∇V∗

s (x2)‖2 ≤ LV1 ‖x1 − x2‖2

‖∇ϕ(x1)−∇ϕ(x2)‖2 ≤ Lϕ ‖x1 − x2‖2

with

LV1 =
(1 + γ)CrxLπ

√
|A|

(1− γ)2 +
Lr

1− γ

Lϕ = Ll1 + LlHILπ

√
|A|+ 2τ−1HI

(
ClLV1 +

Crx

1− γ
Ll

)
+

2H2I2ClCrxLπ

τ (1− γ)

√
|A|
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Convergence analysis (model-free)

Theorem (model-free)
In SoBiRL, with a constant step size β < 1

2Lϕ
, the iterates satisfy

1
K

K∑
k=1
‖∇ϕ (xk)‖2 ≤ ϕ (x1)− ϕ∗

K
(
β
2 − β2Lϕ

) +
1 + 2βLϕ

1− 2βLϕ
L2
ϕ̃
ϵ

Theorem (stochastic)
In Stoc-SoBiRL, with appropriate sampling configurations, the iterates satisfy

1
K

K∑
k=1

E
[
‖∇ϕ(xk)‖2

2

]
= O

(
logK
K2/3

)
= Õ

(
K− 2

3
)

Algorithm Deter. or Stoch. Conv. Rate Inner Iter. Oracle

PARL Deter. O(ϵ−1) O
(
log ϵ−1) 1st+2nd

PBRL Deter. O(λϵ−1) O
(
log λ2ϵ−1) 1st

HPGD Stoch. O(ϵ−2) O
(
log ϵ−1) 1st

M-SoBiRL Deter. O(ϵ−1) O (1) 1st
SoBiRL Deter. O(ϵ−1) O

(
log ϵ−1) 1st

Stoc-SoBiRL Stoch. Õ(ϵ−1.5) O
(
log ϵ−1) 1st
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Numerical Experiments



RLHF problem

Goal: learn the intrinsic reward model and the optimal policy
only based on preference labels y ∈ {0, 1}

Problem formulation:

min
x

Ey,d1,d2∼ρ(d;π∗(x)) [lh (d1, d2, y; x)]

s. t. π∗ (x) = argmin
π

−Vπ
Mτ (x) (ρ)

Environments: Atari games and Mujoco environments
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Default Settings

Compared methods

• DRLHF [Christiano et al., 2017]: alternating minimization of E [lh] and −Vπ
Mτ (x)

• PBRL [Shen et al., 2024]: penalty-based method
• HPGD [Thoma et al., 2024]: stochastic bilevel RL method
• SAC (baseline) [Haarnoja et al., 2018]: soft actor-critic algorithm given the
ground-truth reward

Running platform

• Intel® Xeon® Gold 6330 CPUs & NVIDIA A800 GPU
• Python 3.8.0 + Pytorch 1.13.1 + Stable-Baselines 3
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Numerical results

• SoBiRL is comparable to the baseline SAC
• SoBiRL obtains a higher return than other bilevel methods
• The accuracy of preference prediction of DRLHF achieves approximately

85%, while it hovers around 54% for SoBiRL
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Third visit to hyper-gradient

Update rule of DRLHF [Christiano et al., 2017] alternates between minimizing E [lh]
and learning π

M× : x+ = x− βEdi∼ρ(d;π∗(x)) [∇l (d1, d2, ..., dI; x)]
N× : π+ = π +∇πVπ

Mτ (x) (ρ)

Update rule of SoBiRL (ours)
1× : x+ = x− β∇ϕ(x)

N× : π+ = π +∇πVπ
Mτ (x) (ρ)

∇ϕ(x) = Edi∼ρ(d;π∗(x)) [∇l (d1, d2, ..., dI; x)]

+ τ−1Edi∼ρ(d;π∗(x))

[
l (d1, d2, ..., dI; x)

(∑
i

∑
h

∇
(

Q∗
si

hai
h
(x)− V∗

si
h
(x)
))]

, ∇ϕ(x) integrates exploitation and exploration!
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Conclusions and perspectives

Contributions

• Fully first-order hyper-gradient
• AID-based RL algorithm without lower-level convexity
• Stochastic extension
• Enhanced convergence results

Future works

• Extension to general strongly-convex regularization
• General settings without regularization
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• Code is publicly available from https://github.com/UCAS-YanYang
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