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Bilevel Optimization and
Hyper-gradient



Standard formulation

Bilevel Optimization (BiO)
min  f(z,y")

st.  y" € argmin g(z,7v)
yeY

The nested structure couples the upper level and lower level

min ¢(z,
min g(z, y)



Model selection [Kunapuli et al., 2008; Giovannelli et al., 2021]
Hyper-parameters optimization [Franceschi et al, 2018; Bao et al.,, 2021]
Data poisoning [Liu et al., 2024]

Reinforcement learning [Hong et al,, 2023; Chakraborty et al,, 2024; Shen et
al,, 2024]



Three visits to hyper-gradient

Recall the BiO problem
min  ¢(z) := f(z, y"(2))

z€R

st. y"(z) = argmin g(z, y)
yeR%

How to study the hyper-gradient V¢?
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_/ U stand hyper-gradient !
ol 3 vt
7, (\f/ V)
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Approximate implicit differentia tion (AID)

Scenario of interest: g(z,-) is strongly convex

y*(z) = arg min g(z, y)
yeR%

By optimality condition & implicit function theorem

0= Vyg(z, v (2) = Vie(z,y" (2) + V.y' (2) Vig(z, y* (2) =0

Hyper-gradient computation
Vé(z) := Vf(z,y"(2))
= Vaf (2,5 (2) + Vou/' (2) " Vof (2, 5" (2))
= VLf(I7 Z/*) - Y'rz/,l(l Y > {Tw//(l Y )} 7|Vyf($a y*)

Vanilla update rule
1

1x: er =T— ﬁ (vZf(Z7 y) - vf!/.(/ (‘I"' U) {T‘iz/(] (/‘/1"* !/)} Vyf(wv y))

Nx :y" =y—aV,g(z,y)



First visit to hyper-gradient

Geometry
f(l“, Y)
. vy | .
Algebra

Vo) = Vaf (59) ~ Vi (0,5) [Vao (w0)] V(@)



Bilevel Reinforcement Learning




Reinforcement learning (RL)

Agents learn to make sequential decisions, by interacting with environments
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Markov decision process (MDP)

state action
St ag ~ 7 (+|st)
| reward 7y
: Environment
! next state

Spp1 ~ P(-|st, ar)

Environment M, = (S, A, P, r,~,T)

State space S, action space A

Transition matrix P € RISIAIXISI

Reward function r € RISIIAI

Policy € RIS which induces P™ € RISIXISI: pT, = S 700, Py



Soft value function and Q-value function

OO OO —O

Vse S V:r :=E |:Z ’Yt (rsmf, + Th(ﬂ'sr,)) ‘ So = 577T>M7-:|

t=0

V(S7 a) €ESxA: Q=1+t ’YEs’wP(-Ls',a) [V:r’]

s

Given the initial state distribution p, RL aims to solve
max  V"(p) = Esvp [VS]

™

t=0

=k |:Z ’Yt (TSL(LL + Th(TrSt)) so ~ p,m, M

|




Two scenarios

Agent

)

Environment

Reinforcement
Learning

~ - ~

unknown

Model-free

known

Dynamic Programming
and Optimal Control

Model-based



Bilevel RL formulation

Parameterized MDP: M, (z) = (S, A, P, r(z),~,T)
Quantities in bilevel context

VseS: Vi(z): =E

NgE

'Yt (Tsiai () + Th(ﬂ'st)) S0 =S, T, MT(I):|

t=0

V(s,a) € SxA:  QL(2) : = rea(z) + YEy o piis,a) [V (2)]

Bilevel RL problem

min - ¢(z) := f(z, 7" ()
s.t. 77 (2) = argmin — Vi, (p)



Applications of bilevel RL

Reward shaping [Hu et al, 2020; Devidze et al, 2022]
min — VﬁM(:) (P), s.t. 7" (z) = argmin — Vi, (p)
E reAlAl
RL from human feedback (RLHF) [(christiano et al, 2017]

min - By g, dyp(aie (a)) [l (1, d2, 35 2)]

st 7" (2) = argmin — Vi, (p)

- Trajectory sampled by 7*(z): d; = {(s},, a}) }1=, (4

- Preference for dy over da: y € {0, 1}

=1,2)

More applications

- Apprenticeship learning [arora and Doshi, 2021]
- Contract design (wu et al, 2024]
- Robot navigation [Chakraborty et al., 2024]



Motivation and challenge

Problem formulation
min  6(2) = (s 7" (2)
s.t. 77 (2) = argmin — Vi, (p)

where Vi ) (p) =E 35207 (roa(2) + 7h(7s,)) | s0 ~ p, 7w, Mo (2)

Main difficulties

e Lower-level inherent non-convexity [agarwal et al, 2020; Lan, 2023 MP]
e Only the non-uniform PL condition [mei et al, 2020]

e Existence of hyper-gradient Vé(z)? [shen et al, 2024]



Related works

Related work

e An AlD-based bilevel RL framework, PARL [chakraborty et al, ICLR 2024]
e A penalty-based method, PBRL [shen et al, IcML 2024]
e A stochastic bilevel RL method, HPGD [thoma et al, NeurlPS 2024]

Comparison among provable bilevel RL algorithms

Algorithm Deter. or Stoch. ~ Conv. Rate Inner Iter. Oracle
PARL Deter. O(e™h) O (loge™1) 1st+2nd
PBRL Deter. O(xe™ 1) O (logX2e 1) 1st
HPGD Stoch. O(e2) O (loge™) 1st
M-SoBiRL Deter. O(e™h) O (1) 1st
SoBiRL Deter. O(e™h) O (loge™1) 1st
Stoc-SoBiRL Stoch. O(e %) O(loge™) 1st




Model-based Soft BiRL




The fixed-point equation

Revisit the strong convexity requirement in AID

e Unique lower-level solution = 4" (z)
e Nonsingular Hessian = V" (z)

Softmax temporal value consistency (Nachum et al, 2017]

V(s,a) e Sx A:  ma(z) =exp (7,—1 <r5a (z) +72 Pos Vi (2) — V2 (@))
VseS: Vi(x)=rlog (Zex (rsa +v2: Py Vi (z )))

Take the derivative
V' (z) = 7~ diag (7" (2)) (Vr(z) — UV V" (2))




The fixed-point equation

Revisit the strong convexity requirement in AID

e Unique lower-level solution = 4" (z)
e Nonsingular Hessian = V" (z)

Softmax temporal value consistency (Nachum et al, 2017]

V(s,a) e Sx A:  ma(z) =exp (7,—1 <r5a (z) +72 Pos Vi (2) — V2 (@))
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Investigating V V*(x)

Consider the parameterized mapping ¢ : R x RIS s RIS

o(z, ) = 7log (exp (M) . 1)

e Take the derivative
Ops (z,v) WZG P,,o exp (7—71 (rea (z) + 7 9/ Poasrv97))

8’051 Z(z exp (7—*1 (Tsa (ZE) + 0% Zs” Psus” ’[)5//))




Investigating V V*(x)

Consider the parameterized mapping ¢ : R x RIS s RIS

o(z, ) = 7log (exp (M) . 1)

e Take the derivative
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Investigating V V*(x)

Consider the parameterized mapping ¢ : R x RIS s RIS

o(z, ) = 7log (exp (M) . 1)

e Take the derivative
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____________________________________________

e Differentiate both sides of ¢(z, V*(z)) = V*(z)
VV () = (I Vap(z, V' (2))) " Vasp(a, V' (2))



Investigating V V*(x)

Consider the parameterized mapping ¢ : R x RIS s RIS

o(z, ) = 7log (exp (M) : 1)

e Take the derivative
Ops (z,v) D, Psas €xp (7—71 (rea (z) + 7 9/ Poasrv97))

Ovy v Z(z exp (T71 (Tsa (:E) + v ZS” Pyosr ’[)5//))

____________________________________________

e Differentiate both sides of ¢(z, V*(z)) = V*(z)
VV () = (I Vap(z, V' (2))) " Vasp(a, V' (2))



Designing the model-based algorithm

Model-based hyper-gradient

Vé(2) = Vaflz, 7" (2)) + V' (1) wf(x ™ (z))
= Vaflz,w" (@) + 77 (Vr(z) = UVV" (2)) " diag (7" (2)) Vaflz, 7" (1))
= Vof(z,w" (1)) + 77 Vr(2) | dlag( (@) Vrflz, n" (2))

T

— T Vap (3, V(@) (1=P" @) U7 ding (77 (2)) Vofiz, 7 ()



Designing the model-based algorithm

Model-based hyper-gradient

Vé(2) = Vaflz, 7" (2)) + V' (1) wf(x ™" ()
= Vaflz,w" (@) + 77 (Vr(z) = UVV" (2)) " diag (7" (2)) Vaflz, 7" (1))
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T
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Designing the model-based algorithm

Model-based hyper-gradient

Vé(2) = Vaflz, 7" (2)) + V' (1) ﬂf(z ™" ()
= Vaflz,w" (@) + 77 (Vr(z) = UVV" (2)) " diag (7" (2)) Vaflz, 7" (1))
= Vof(z,w" (1)) + 77 Vr(2) | dlag( (@) Vrflz, n" (2))

T

— Ve (@ V(@) (1=P" @) U diag (x(2)) Vaf(z, 7 (@)

___________________________________

___________________________________

Inexact strategy

° V}z:: V*(Ik)<— Vi QZ = Q*(Ik)(— Qk TI’Z ::W*(Ik)<—7Tk
° A;lbk +—— wy With Ay = (I — ﬁ/P’”’)-r by = U diag (mx) Vaflzm, m1)



Amortization and approximation

Model-based hyper-gradient estimator
~ 1 .
V& (T, 7y Viey wie) := Vaf (T, mi) + ;Vr(xk)T diag (7x) Vx (@, 7k)

1
— ;VAP(CCk Vk)ka

Soft Bellman operator solves lower-level problem

Trm, @(Q)(s, @) = rwa(a) +7, PHZ:\ [Tlog (|lexp (Q(¢5-) /7)I,)]

Softmax temporal value consistency points to Vand =
V() = rlog (32 exp(QL(2)/7))

= o0 (1) /)
TS e (@ () /7)

Least squared perspective

1
wy &~ min = |[Agw— by
weRl S| 2



Model-based bilevel RL algorithm: M-SoBiRL

M-SoBiRL

1x

1x

1x:

1x:

Wy = Wg—1 — & ((AkTAk> Wh—1 — A,Ibk>

Vi (s) = 7log (Zaexp (Qx (s, a) /7‘))

P Tl = T — 56(1) (Ik, Tk, Vk, wk)
C Qo = TM,.(;ck_‘_l)(Qk,nfl)
i mpe1 = softmax (Qrt1/7)




Model-free Soft BiRL




Model-free bilevel RL

Problem formulation

min - ¢(z) == f(z, 7" (2))
s.t. w7 (2) = argmin — Vi, (p)
with f(z, m) = B p(asm) [[(da, da, ..., di; 7))

Main difficulties
V() = Vof(z, 7* (2)) + 7 'Vr(z) " diag (7% (z)) Vaf(z, 7* (z))

— 7 W (a, V(@) (17 ) T U7 diag (7 (1)) Vi fla, 7 (2))

® Relying explicitly on the black-box P

@ Involving large-scale matrix multiplications

20



Absorb P into an expectation

VV:(2) =(I= Vg (2, V'(2)), Vap (2, V" (2))

727 ZP 73/|50:S77T Zvrsa Tra’a )

MS;“

’ytz P(si=5,a=also = 5,7 (2)) Vry, (2)

s

t

Il
<}

s',a

=E Z’yfVTTw, ) so = s, 7" (z), M+ ()
t=

21



Absorb P into an expectation

VV:(2) =(I= Vg (2, V'(2)), Vap (2, V" (2))

727 ZP 75/|SOZS77T Zvrqa Tra’a )

________________________________________________
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Circumvent complicated matrix computations

Hyper-objective
gb(.fl,) = Edin(d;ﬂ.*(I)) [l(dh dz, ceey d[; {E)]
= Y Udi,da, ... d52) T P(di; 7" (2))

(dy,..-,dy)

Consistency condition
V(s,a) e Sx A: mi(z) =exp (7'_1 (Qis () — V3 (x)))

Log probability trick

> U(di, da, .., dpy3) VIIZ, P (di 7* (2))
(dy,...5dp)

= Egmp(din (2)) |:l(dlv da, ..., dr; 1) V (Z log P (dj; 7" (ﬂ))}

= TﬁlEdiwp(d;Tr*(z)) |:l(d1, da, ..., dr; ) (ZZ v (Q’: i (z) — V’f; ol (T)>>:|
raly L L h

i
1@

22



Second visit to hyper-gradient

Model-free hyper-gradient

V(f)(T) = Ed,;r\/p(d;ﬂ'*(x)) [Vl(dl, dQ, ceey d[; T)]

+ 7 B p(dim () {l(dhdm-- dr; ) (ZZ ( -V (@)ﬂ

23



Second visit to hyper-gradient

Model-free hyper-gradient

V(f)(T) = Edir\/p(d;ﬂ'*(x)) [Vl(dl, dg, ceey d[; LE)]

+ T B g (i () {Z(dl,dg,...,dl; ) (ZZV (Q;‘; ol (z) — v;;; (:r)>>:|

P h

———————————————————————————————————————————————————————————
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Second visit to hyper-gradient

Model-free hyper-gradient

V(f)(T) = Edir\/p(d;ﬂ'*(x)) [Vl(dl, dg, ceey d[; LE)]

+ T B g (i () {Z(dl,dg,...,dl; ) (ZZV (Q;‘; y (z) — v;;; (:r)>>:|

P h

———————————————————————————————————————————————————————————

specific structure of RL

23



Construction of estimators

Step 1: evaluating the implicit differentiations

%V (g, 1) Z’y Vs, a, () ‘ So = 8, W, M~ (xk):|
=0
V Qsa(, k) ZW Vs, a, (k) ‘ So = 8, ap = a, T, M+ (l‘k):|

Step 2: absorbing them into the sampling process
6(ZS(Z/w ﬂ—k’) = Edimap(d;wk) [vz(dh d27 (XX} d]7 Zk)]

+ 7 Edpmp(aim) {l(dh da ooy dria) (YD 0V (Qs;;a;; - Vs;f) (2, Wk))]
i h

%



Model-free Soft BiRL algorithm: SoBiRL

Algorithm SoBiRL

Input: iteration number K, step size 3, initialization 1, mo, accuracy e
1. fork=1,...,Kdo
2. Solve the lower-level problem approximately with initial guess w1 to
get 7y, such that ||my, — 7 () |3 < e
3 Compute the approximate hyper-gradient V¢ (az, mx)
4 Implement an inexact hyper-gradient descent step

T = 3 — BV (25, 1)

5. end for
Output: (zg+1,TK+1)

25



Model-free Soft BiRL algorithm: SoBiRL

Algorithm SoBiRL
Input: iteration number K, step size 3, initialization 1, mo, accuracy e
1. fork=1,...,Kdo
2. Solve the lower-level problem approximately with initial guess w1 to
get 7y, such that ||my, — 7 () |3 < e
3 Compute the approximate hyper-gradient V¢ (az, mx)
4 Implement an inexact hyper-gradient descent step

Tt1 = T — 5€¢($k7 k)
5. end for
Output: (zg+1,TK+1)

—————————————————————————————————————————————————
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Stochastic extension

Main adaptation

e Characterize the bias and variance

e Replace V¢ with its stochastic counterpart

Ve (Di, &k, Gi; Xk, T) = ZVZ dy’; a)

7YL—

[ Sh

M
+ %/[Z 1(dy"s 2) ZZV<Q§L i =V ) (T, k)

e Maintain a momentum-instructed hy for acceleration

he = Vor+ (1 — pi) (he—1 — V(D &k, G; Xu—1, Tk—1))

26



Stochastic extension

Main adaptation

e Characterize the bias and variance

e Replace V¢ with its stochastic counterpart

vd) (D’wfluCthJfk = Z Vl k ,fk

7YL—

LS iapin zzv(cza, o= V) (@)

Sho O h
m—

e Maintain a momentum-instructed hy for acceleration

he = Vor+ (1 — pi) (he—1 — V(D &k, G; Xu—1, Tk—1))

_________________________________________________
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Theoretical Analysis




Upper-level assumptions

e (Model-based) Vf(z, ) is LyLipschitz, and ||V« f(z, 7*(z)||, < Cpr

e (Model-free) I(di, da, . .., dr; z) is Li-Lipschitz, VI(dy, da, . .., dr; x) iS
Lyu-Lipschitz, and |I(d1, da, ..., drz)| < Cu.

Lower-level assumptions

e forany (s,a) € S x A, |rw(z)| < Cr, [|Vrsa(2)||y < Cre, and Vrga(z) is
L,-Lipschitz

27
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e (Model-free) I(di, da, . .., dr; z) is Li-Lipschitz, VI(dy, da, . .., dr; x) iS
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—————————————————————————————————————————

27



Convergence analysis (model-based)

Theorem (model-based)
In M-SoBIRL, with constant step sizes 3, &, and the inner iteration
number N ~ O(1), the iterates {z} satisfy

}(fj Ivols =0 (%)

28



Development of hyper-gradient

Proposition (hyper-gradient)
Foranyse S, a€ A, and z1, 22 € R",
IV Qsu(21) = VQialm2)ll, < Lva |21 — 22|,
IV Vi(z1) = VVi(22)lly < Lva [z — 22l
[Vé(z1) = Vo(z2)[|y < Lo |21 — 2[5

with

(14+7)CraLry/|A| L,
Ly = 5 +
(1=7) L=x

_ Crs 2H* P C,Cyy Ly
Ly = Ly + LiHIL~/|A| + 27 1H[<ClLV1 + 5 _"VLZ> + ruiiw‘/'*“

29



Convergence analysis (model-free)

Theorem (model-free)
In SOBIRL, with a constant step size 8 < 2L , the iterates satisfy

¢($1) - ¢" 1+28Ly 2

Theorem (stochastic)
In Stoc-SoBIRL, with appropriate sampling configurations, the iterates satisfy

fl(iE [Ivote0lE] =0 (F55) =6 (k%)

Algorithm Deter. or Stoch.  Conv. Rate Inner Iter. Oracle
PARL Deter. O(e™h) O (loge™1) 1st+2nd
PBRL Deter. O(Ae 1) O (log AZe~ 1) 1st
HPGD Stoch. O(e7?) O (loge1) 1st
M-SoBiRL Deter. O(e™h o(1) 1st
SOBiRL Deter. O(e™h O (loge™1) 1st
Stoc-SoBiRL Stoch. O(e 13 O(loge ) 1st

30



Numerical Experiments




Goal: learn the intrinsic reward model and the optimal policy
only based on preference labels y € {0,1}

Problem formulation:
mxin Ey,dl,dgr\/p(d;ﬂ*(m)) [lh (dh d27 Y; CC)]

s.t. 7 (z) = argmin — V. () (p)

Environments: Atari games and Mujoco environments

31



Default Settings

Compared methods

DRLHF [christiano etal, 2017): alternating minimization of IE [i;] and — Vi,

e PBRL [shen etal, 2024]: penalty-based method

HPGD [Thoma et al, 2024]: Stochastic bilevel RL method

e SAC (baseline) [Haarmoja et al, 2018]: SOft actor-critic algorithm given the
ground-truth reward

Running platform

e Intel® Xeon® Gold 6330 CPUs & NVIDIA A800 GPU
e Python 3.8.0 + Pytorch 1131 + Stable-Baselines 3

32



Numerical results

BeamRider HalfCheetah
x10°
10.0{=— SoBIRL
—— DRLHF
£ 80— pRL
2
7] HPGD
& |
= 601 __ sac
£
3 4.0
2
2.04
00 05 1.0 15 20 25 30 35 4."0 0.0 2.0 4.0 6.0 8.0 IQ,O
Timestep 10 Timestep 10

e SOBIRL is comparable to the baseline SAC
e SOBIRL obtains a higher return than other bilevel methods

e The accuracy of preference prediction of DRLHF achieves approximately
85%, while it hovers around 54% for SoBiRL

33



Third visit to hyper-gradient

Update rule of DRLHF (christiano et al, 2017] alternates between minimizing E [1]
and learning =

Mx : $+ =T — ﬁEdiNP(d;ﬂ-*(m)) [VZ(d1, dz, PR d[; x)]

Nx 7% =74 Ve Vi, ) (p)

Update rule of SoBiRL (ours)
1x : 2t = z— BV¢(x)
Nx 1" = 7+ Ve Vi, 0 (0)

V(b(E) = ]Ediwp(d;w*(z)) [vz(dlv da, ..., dr; 1:)]

+ 7 By p( i (a) {l(dl,dg,.‘.,dj; ) (ZZV <Q:}i @)=V (:p)>>}
7 h v '

_____________________________________________________

_____________________________________________________
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Conclusions and perspectives

Contributions

e Fully first-order hyper-gradient

e AID-based RL algorithm without lower-level convexity
e Stochastic extension

e Enhanced convergence results

Future works

e Extension to general strongly-convex regularization
e General settings without regularization
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