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Low-rank optimization



Low-rank problems: a geometric view

Optimization on the fixed-rank manifold

min f(X) st. Xe R :={XeR™": rank(X) = 1}

e R™™is a smooth manifold [Helmke and Shayman, 1995]
e Riemannian optimization algorithms [vandereycken, 2013]
e R™™ s not closed

Optimization on the set of bounded-rank matrices

min f(X) st XeRZ":={XeR™": rank(X) < r}

e RZX"is a real-algebraic variety [Harris, 1992]
e Geometric methods [Schneider and Uschmajew, 2015; Hosseini and Uschmajew, 2019; Gao and
Absil, 2022; Olikier et al,, 2022; Levin et al,, 2023; Rebjock and Boumal, 2024]

e RZX"is closed



Low rank + additional constraints

Bounded-rank matrices + orthogonally invariant constraints
min  f(X)
s.t.  rank(X) <r
h(X) =0
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Applications

Coupled feasible region

RZX"AH with H = {X: h(X) = 0}

Low rank + oblique manifold
e Low-rank data fitting on sphere [chu et al, 2005 SIMAX]

H = Ob(m,n) :={X € R™*": diag (XXT) —1=0}
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Applications (cont'd)

Low rank + Frobenius sphere
e Low-rank approximation of graph similarity matrices [Cason et al, 2013 LAA]
H = Sp(m,n) = {X € R™": | X|[2 — 1 =0}
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Applications (cont'd)

Low rank + Frobenius sphere
e Low-rank approximation of graph similarity matrices [cason et al, 2013 LAA]
H = Sp(m,n) = {X € R™": | X]|2 - 1=0}
Low rank + stacked Stiefel manifold
e Low-rank solutions of synchronization problems [Boumal, 2015]

H= {X: (X15 X253 X)) € R*PX™: X[ € St(n, p) for j= 1,2,...,k}

X, s X, X] =1

T _
Xo: XXy =1| | eH
Xy XgXg =1

e Low-rank semidefinite programs [Journée et al, 2010; Tang and Toh, 2023]
min (C,Y) s. t. YER’;:_"OS", A(Y)=1b

Low rank + SDPs

min <c, XXT> st X € R AXXT) = b



Challenges

Constraint-coupled optimization

min X

Xe]‘Rm,X n
s. t. XeRZ"NH

Challenges

e Unknown optimality conditions

Bouligand-tangent cone of the coupled feasible region

mxmn

e Inherently non-smooth structure of RZ ™ [Levin et al, 2023 MP]

e Unclear strategy to preserve feasibility on RZX" NH
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Bounded-rank optimization: optimality analysis

Variational geometry of RZ "

e Mordukhovich normal cone [Luke, 2013]
e Bouligand tangent cone and Fréchet normal cone (schneider and Uschmajew, 2015]
e Clarke tangent cone and the corresponding normal cone [Hosseini et al, 2019; Li

et al, 2019]
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Variational geometry of RZ" N C

e Mordukhovich normal cone when C = Sym(n) [tam, 2017]
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Bounded-rank optimization: algorithms

e Projected gradient descent framework ain et al, 2014; Schneider and Uschmajew, 2015;

Olikier et al., 2022; 2024]
e Retraction-free methods [schneider and Uschmajew, 2015; Olikier et al,, 2023; 2024]

e Optimizing over a smooth parameterization

minf(Y) s.t. Y€ M

Rgf”’ —)f R

- LR factorization [mishra et al. 2012; Levin et al. 2022]
M =R™T x R™*" (L, R) = LR"
- SVD-type Lift [Mishra et al, 2014; Levin et al, 2023]
M = St(m, r) x Sym(r) x St(n, ), $(U, S, V) = USV"
- Desingularization [Kkhrulkov and Oseledets, 2018; Rebjock and Boumal, 2024]
M={(X,G) eR™" xGr(n,n—71): XG=0}, ¢(X,G) = X



A space-decoupling framework?

min — f(X)

XeR’I‘ﬁX n
st XeR"AH
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A space-decoupling framework?

min — f(X)

XER’I‘HX n
st XeR"AH

Goal

optimality analysis

smooth parametrization
equivalence of two problems
convergence analysis



Orthogonally invariant functions and
optimality analysis



Orthogonal invariance “meets” low rank

Low-rank decomposition
o H={XeR™": h(X) =0} with orthogonally invariant »
e X € R™"™NH extracts low-rank () and orthogonally invariant (1)

X = | Hd 74l
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Space decoupling - level 1: tangent space

H={XeR™": (X)=0} and A(XQ) = h(X)for Qe O(n)

Definition

e Bouligand tangent cone:
(Xi — X)

TxX := {7] = Alim
k— 00 k

: X € Xt >0 for all k, lim ¢, = 0} .
k— o0
e frechet normal cone: NxX := (TxX)°
Tangent space decoupling at x = #v' e &
TxH = {KVT +BV]: KeTyH’, Be R"””’H)}

= (THH") VT\'D (Rmx(n_s)) VI
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Tangent cone and projection

Smooth layers

R NH = RI"NH): X=HV = USV'

s=0
e R™ N H is a smooth manifold with
Tx (RI"NH) = TR N TxH
={KVT + UIV] s KeTun', JeR™}

Closed-form characterization

KVT + UJV] + ULRV] : K€ TyH* }

mxn _
Tx (RSV ﬁH) - { Je Rsx(nfs)7 Re ]R('mfs)x(nfs)7 rank(R) <r—s

Projection onto the tangent cone
-
,PTX(RgfnﬁH) (E) = (PTHH“ (EV)) Vo + PUEPVL + P&;ﬁ;xs"' (PUL EPVL)

where Py := WWT



Space decoupling - level 2: tangent cone

How orthogonally invariant affects the tangent cone x = vx v’

vl ov] vl vl
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Intersection rules for tangent and normal cones
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Optimality analysis

Definition
A point X € RZ1 " N*H is stationary if —=VA(X) € Nx(RZ " NH), or
equivalently, P, (-VAX)) =0

TTx(REX"NH)

First-order optimality conditions

e Decompose X = UL VT = HV' with rank(X) = sand H= U

e Projected anti-gradient vanishes

(Prs (VAX)V)) VT + PuNAX) Py, + Pamxn (Pu, VAX) Py, ) =0

e Stationarity at rank-deficient point X with s < r
~VAX) € (NgH*) V'

which reduces to Vf(X) = 0 when H = R™*"



A space-decoupling parameterization




Space decoupling - level 3: a smooth parametrization

[
My — R’;j”m?—[
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A space-decoupling parameterization M;,
e Parameterize the coupled and non-smooth RZ" NH
My :={(X,G) e R™" x Gr(n,n—71) : XG=0, h(X) =0}

where Gr(n,n —r) = {G € Sym(n) : G® = G, rank(G) = n— r}
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Riemannian geometry

Represent (X, G) € My, by X=HV" and G =I— VV' with
HeMH" and Ve St(n,1)
Tangent space at (x, @) € M,
ToxoyMu={(KVT + HV}, =V, VT = V] ) s K€ TH’, VIV, =0}

Riemannian metric inherited from £ := R™*" x Sym(n)
Represent (n:, (i) € Tx,¢)Mn with (Ka, Vp2) (i=1,2)

((n1,¢C1), (02, C2)),, = (K1, Ko) + (Vip1, Vp2aMu)
where My, :=2wl+ H H

Projection of (&, 2) € £ onto T x. ;y M,
K=Prgw (BY),  V,=GE H-22V)My,
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Optimization via the parametrization




Recast the original constraint-coupled problem

i X, G
(ngl)glmf( , G)

min  f(X)

mxmn
XeRTX"NH

Smooth parameterization
e ¢: My —RZNH: (X, G) — Xisasurjection

e Smooth Riemannian optimization problem over M,
- Riemannian derivatives
- Riemannian retractions
- Vector transports



Space decoupling - level 4: optimization

Riemannian gradient V o, f(X, G)
K=Pr,p (VAX)V),  Vy=GVAX) HMy,,.
Riemannian Hessian V3, (X, G)[n, (]

K=VifX)InV+ (I- HM;,}WHT) VAX)V,
Vy = G (=Vo[Pryrer (VAX) V)T H+ (VX)) " H+ VAX) " Wao K) My,

First-order retraction
Rix,e)(n,Q) i= (RI (K)(RV(Vy)) T, I=RV(V)(RY(V,) ),
Second-order retraction
Rex,a) (,€) == ([P (X+m) W) W', T— WW')
W=LLL) 2, L=V+V,(I- K HM.)

Vector transport K = 7(K) and V, = (I— VVT)T.'(V,)

20
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Equivalence of problems

i X, G
x B, FXG)

min  f(X)

XERZX"NH

]R{gj”m{ — > R

21



Equivalence of problems

i X, G
BB, FX O)

min  f(X)

XERZX"NH

jo”m{ — > R

Proposition
The space-decoupling parametrization M, of RZ™ N satisfies

(i) “1=-1"and “2=-2" hold at (X, G) if and only if rank (X) = r.
(i) “2=1" holds everywhere on M,

21



Convergence results

Important ingredients

e M, is a complete manifold

e Compact sublevel sets of f= compact sublevel sets of f
General convergence theorem

e The sequence {(Xx, Gi)} generated by monotone algorithms has at
least one accumulation point.

e If the accumulation point (X*, G*) is second-order stationary on M,
then X* is first-order stationary on RZ ™.

Specific algorithms

e RGD accumulates to first-order critical points

e RTR accumulates to second-order critical points

22



Numerical experiments




Low-rank approximation of spherical data

Approximate A € H = Ob(m, n) with low-rank matrix [chu et at, 2005 S1AMX]

1
min > | Pa(X — A)||2

XeERmMXn

w0
ct+
=~
]
=]
R
ks
N
3

23



Low-rank approximation of spherical data

Approximate A € H = Ob(m, n) with low-rank matrix [chu et at, 2005 S1AMX]

{ \

| . 1 2 : c/ 77777777777777777777777777777 M
| min S [Po(X = A)]| L 1 |
| xR 2 | min fl@) =5 [Pa(é(a) - Dl
| t k < | ) | :
i ° rank(X) < 7 ! st zEM, !
: : | |
| |

Methods based on Manopt v8.0

e Riemannian gradient descent method (RGD)
e Riemannian trust region method (RTR)
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Test on synthetic data: unbiased rank

Test with the unbiased rank parameter

e Synthetic A € RZ™ N Ob(m, n), (m, n) = (5000, 6000)

rank parameter r = r* = 6, oversampling factor OS = 5

M;-RGD (w = 0.1)

= = = M;-RGD (w = 10) == === M;-RGD (w = 50)
M-RTR (w = 0.1) M;-RTR (w = 0.5) = == = My-RIR (0 =10) s M;-RTR (w = 50)
10° 10°
) o
3 ™
1 SN 3 W,
5107 3\ = 5 107 S o
= 1 - = \ \ e
[ 3| T 5 N S
r 1 L % LN -
(0] | SNl o) Y S A,
= 10-10 1 s = 10-10 \‘ \ oo S=
1 ~
i ! DA
A M
1071 107
0 20 40 60 80 100 0 1 2 3 4
Iteration Time (s)

%



Test on synthetic data: over-estimated rank

Test with over-estimated rank parameters

e Synthetic A € RZ™ N Ob(m, n), (m, n) = (5000, 6000)
true rank ¥ = 6, oversampling factor OS =5

over-estimated rank parameters r=7,8,9,10 > r*

Algorithm r=17 r==8 r=29 r=10
Testerr. Time Testerr. Time Testerr. Time Testerr. Time
Mp-RGD  1.97e—11 10.23 1.69e—10 11.22 1.49e—11

9.56 1.08e—9 7.30
M;-RTR  2.8le—15 6.03 3.97e—15 15.34 2.4le—14 4.51

6.77e—14 17.08

25



Low-rank approximation of graph similarity matrices

Measuring problem [cason et al,, 2013 LAA]
X € H = Sr(m, n) measures the node-to-node similarity between graphs

| in  —to(X"LoL(X) | - w
i XeRmxn x ° £(X) : [ min —tr ((j)(x)Tﬁ o £(¢($))) 1
: s.t.  rank(X) <r |— ’ 1
| X - 1=0 L h e |
| ] N _ /

26



Test on low-rank solution

Problem setting

e (G4 of m = 2000 vertices: a single cycle
e Gz of n = 3000 vertices: binomial random graph
e Solution of low rank: 7 = rank(X*) =1

e [t erative  (r = 1)

107! My-RGD (r = 1) 107!
S S
[ 10-3 5 103
() ()
= =
k| 8
& 100 & 10

1077 1077

Iteration Iteration

Left: test with the unbiased rank parameter r=1r" =1

Right: test with over-estimated rank parameters r = 10, 50, 100 > r*

27



Test on full-rank solution

Problem setting

e m = nto generate G4 and Gp: binomial random graphs

e Solution of full rank: 7 = rank(X") = m

Numerical results of “M,-RTR” for different m and r

. . r=10% xm r=50%xm r=7%xm r=100% x m
Dimension m
Rel. err. Iter. Rel. err. Iter. Rel.err. Iter. Rel err. lter.
200 7.82e—7 38 1.25e—7 31 4.76e—8 26 1.43e—11 4
400 8.23e—7 32 1.85e—7 30 5.92e—8 26 1.07e—11 5
600 7.6le—8 39 5.73e—7 27 3.12¢e—7 28 &8.7le—12 5
800 4.82e—7 37 5.79e—T7 28 1.45e—7 21 9.31le—12 5
1000 9.98e—7 37 T7.13e—7 31 3.85e—T7 28 8.02¢e—12 5

28



Low-rank semidefinite programming

Synchronization problem

e 1 cameras with a set of relative rotations { Ry : (i,7) € &}
e reconstruct the absolute rotations {R;}-, such that R ~ R;R;

( Y AT \
| xin, (GXXT) L mm (Ce@e@T) |
i s.t.  rank(X) <r i—): ’ i
| Xen=St@n3" | | b TEM |
o J R J
Reconstructed errors evaluated by || ;R — Ry|r
Errors on Standford bunny Errrs on Spoted cow o
0.25
0.2
0.15
0.1
0.05

100 150 200 250 300 350 0 29



Visualization of the reconstruction

30



Model reduction of Markov processes

Problem formulation

e State space S = {s1, s2, ..., s,} and Markov model P € RIS/*IS|
e Hadamard parameterization, P= X ® X, X € Ob(|S], |S])

31



Model reduction of Markov processes

Problem formulation

e State space S = {s1, s2, ..., s,} and Markov model P € RIS/*IS|
e Hadamard parameterization, P= X ® X, X € Ob(|S], |S])

e Proposed approach

.t zeM
diag(XXT) =1 =0 S e

1/ __________________________ \| /T \
| . 1 Ao ] I I
I min —|XoX-P I I . 1 A |
| XeRlSIx|S| 2” I : ' min §||¢(:v)®d>(x) —-Plz |
: s. t. rank(X) < r : T }
| : : 1
| I | |
| ! N

31



Test on the Manhattan transportation network

Problem setting

e Dataset of 1.1 x 107 NYC Yellow cab trips
e Model the transportation dynamics as a Markov proces

T p\ckup . dropoﬁ_ .
Zt 1 I ( % 5¢ =17

P, j) = for i,je S,

ZtTH ( ?lckup Z)

State compression

32



Reinforcement learning

Agent l
)

state action
st ag ~ 7 (+|st)
reward R

| Environment |~

next state
st+1 ~ P(c|st, ar)

Markov decision process
e State space S, action space A, transition dynamics Pq € RISIXIAIXIS]
e Reward R € RISIXI4 policy 7 € RISIXIAI
o Maximize J(m) := E[>5° v R(st, a) | so ~ p, 7]

33



Low-rank reinforcement learning

Low-rank strategy

e Hadamard parameterization 7(X) := X ® X, X € Ob(|S], |A|)
e Impose the rank constraint rank(X) < r

: i = X : |/

| xemiBia ) L min - Jne@) |
| s. t. rank(X) < r, |—! ’ 1
: ‘ - | | s.t. €My }
| diag(XX' )—1=0. | I )
| ) TT T TS TSI

34



Low-rank reinforcement learning

Low-rank strategy

e Hadamard parameterization 7(X) := X ® X, X € Ob(|S], |A|)
e Impose the rank constraint rank(X) < r
. _ J X 777777777777777777777777
XeRISIXIA] (X))
s. t. rank(X) < r,
diag(XX") —1=0.

\
]
]
]
|
]
]
]
|
]
)

Compared methods

e Low-rank Riemannian policy gradient (LRRPG)
e Q-learning
e REINFORCE

34



Test in two environments

Pendulum Mountain car
r
N\ /
\ /’/
N /
\\\ ;/‘,/
Parameter efficiency
Algorithm Pendulum Mountain car
Parameters pstorage Reward Parameters psiorage Reward
REINFORCE 86,961 1.00 —0.94 582,096 1.00 96.99
Q-learning 86,961 1.00 —0.75 582, 096 1.00 83.95
LRRPG (r = 5) 10,810 0.12 —0.73 15,485 0.03 88.31
LRRPG (r = 10) 21,620 0.25 —0.58 30,970 0.05 86.44

LRRPG (r = 15) 32,430 0.37 —0.83 46,455 0.08 78.23

35



Convergence curves

—— Q-learning —— REINFORCE = LRRPG (r=>5) — LRRPG (r=15)

0 100
1 80
° °
o — ©
¢ 2 g 60
2 _3 = 40
2 °Q
T _, B 20
2 2
& -5 & o
6 -20
05 10 15 20 25 30 35 20 40 60 80 100 120
Timestep x10° Timestep x10°
100 1000
5 80 S 800
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Conclusion and perspectives

A space-decoupling framework: four levels

e Relation between rank and orthogonal invariance
e Tangent and normal cones to RZX" NH
e Space-decoupling parametrization M, and its geometry

e Riemannian optimization on M,

Future work

e Local convergence results on M,

e Bounded-rank optimization with additional constraints
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A unified analysis of tangent sets

Set Format First-order Second-order

M general Theorem 1 Theorem 1
M, matrix [Schneider-Uschmajew'15 SIOPT]  Proposition 1
Mgtr hierarchical Tucker Proposition 2 Proposition 2
Micr Tucker [Gao-Peng-Yuan'25 MP] Proposition 2
/\/lt<tr tensor train [Kutschan'18 LAA] Proposition 2
SSTEn) matrix [Li-Xiu-Zhou'20 JOTA] Proposition 3
SIT(n) matrix [Levin-Kileel-Boumal'25 MP] Proposition 4
Intersection of sets Structured set First-order Second-order

MNK general (M, K) Theorem 2 Theorem 2
Mo NH H is an affine manifold [Li-Luo'23 SIOPT] Appendix C.1
Mo NH H is orthogonally invariant [Yang-Gao-Yuan'25] Appendix C.2
Mo NH ‘H is hyperbolic Appendix C.3 Appendix C.3
S<p(n)nU U={X||X3 =1} Appendix D.1 Appendix D.1
Sir(n) NnU U= {X| A(X) = b} [Levin-Kileel-Boumal'25 MP] Appendix D.2

38



Conclusion and perspectives

A space-decoupling framework: four levels

e Relation between rank and orthogonal invariance

e Tangent and normal cones to RZ" N'H

e Space-decoupling parametrizati?)n My, and its geometry
e Riemannian optimization on My,

Future work

e Local convergence results on My,
e Bounded-rank optimization with additional constraints
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Thanks for your attention!
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