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Low-rank optimization



Low-rank problems: a geometric view

Optimization on the fixed-rank manifold

min f(X) s.t. X ∈ Rm×n
r := {X ∈ Rm×n : rank(X) = r}

• Rm×n
r is a smooth manifold [Helmke and Shayman, 1995]

• Riemannian optimization algorithms [Vandereycken, 2013]

• Rm×n
r is not closed

Optimization on the set of bounded-rank matrices

min f(X) s.t. X ∈ Rm×n
≤r := {X ∈ Rm×n : rank(X) ≤ r}

• Rm×n
≤r is a real-algebraic variety [Harris, 1992]

• Geometric methods [Schneider and Uschmajew, 2015; Hosseini and Uschmajew, 2019; Gao and

Absil, 2022; Olikier et al., 2022; Levin et al., 2023; Rebjock and Boumal, 2024]

• Rm×n
≤r is closed
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Low rank + additional constraints

Bounded-rank matrices + orthogonally invariant constraints

min f(X)

s.t. rank(X) ≤ r
h(X) = 0

Blanket assumptions

• Objective: f : Rm×n → R is twice continuously differentiable
• Smooth and orthogonally invariant constraints

h(XQ) = h(X), for Q ∈ O(n)

• The differential Dh has full rank in

H :=
{

X ∈ Rm×n : h(X) = 0
}

H is a smooth manifold embedded in Rm×n
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Applications

Coupled feasible region

Rm×n
≤r ∩H with H = {X : h(X) = 0}

Low rank + oblique manifold

• Low-rank data fitting on sphere [Chu et al., 2005 SIMAX]

H = Ob(m,n) := {X ∈ Rm×n : diag
(

XX⊤
)
− 1 = 0}

R3×4
≤2 ∩Ob(3, 4) ∋
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Applications (cont’d)

Low rank + Frobenius sphere
• Low-rank approximation of graph similarity matrices [Cason et al., 2013 LAA]

H = SF(m,n) := {X ∈ Rm×n : ∥X∥2F − 1 = 0}

Low rank + stacked Stiefel manifold
• Low-rank solutions of synchronization problems [Boumal, 2015]

H =
{

X = (X1;X2; . . . ;Xk) ∈ Rkp×n : X⊤
j ∈ St(n, p) for j = 1, 2, . . . , k

}
X1 : X1X⊤

1 = I

X2 : X2X⊤
2 = I

X3 : X3X⊤
3 = I

∈ H

Low rank + SDPs
• Low-rank semidefinite programs [Journée et al., 2010; Tang and Toh, 2023]

min ⟨C,Y⟩ s. t. Y ∈ Rn×n
≤r ∩ Sn

+, A(Y) = b

min
⟨

C,XX⊤
⟩

s. t. X ∈ Rn×n
≤r , A(XX⊤) = b
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Challenges

Constraint-coupled optimization

min
X∈Rm×n

f(X)

s. t. X ∈ Rm×n
≤r ∩H

Challenges

• Unknown optimality conditions
Bouligand-tangent cone of the coupled feasible region

• Inherently non-smooth structure of Rm×n
≤r [Levin et al., 2023 MP]

• Unclear strategy to preserve feasibility on Rm×n
≤r ∩H

How to tackle the coupled and non-smooth constraints?
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Bounded-rank optimization: optimality analysis

Variational geometry of Rm×n
≤r

• Mordukhovich normal cone [Luke, 2013]

• Bouligand tangent cone and Frèchet normal cone [Schneider and Uschmajew, 2015]

• Clarke tangent cone and the corresponding normal cone [Hosseini et al., 2019; Li

et al., 2019]

Variational geometry of Rm×n
≤r ∩ C

• Mordukhovich normal cone when C = Sym(n) [Tam, 2017]
• Frèchet normal cone when C = Sym(n) ∩ Bi [Li et al., 2020]

B1 = {X : ∥X∥F ≤ 1}, B2 = {X : −tIn ⪯ X ⪯ tIn}, B3 = {X : X ⪰ 0, Tr(X) = 1}

• When C is a spectral set [Lewis, 1996; Pan, 2017; Li and Luo, 2023]
m 6= n breaks the symmetry!

• Bouligand tangent cone when C={X ∈ Rm×n : ‖X‖F = 1} [Cason et al., 2013]

• Frèchet normal cone when C = {X ∈ Rm×n : A(X) = b} [Li and Luo, 2023]

Not available for Rm×n
≤r ∩H
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Bounded-rank optimization: algorithms

• Projected gradient descent framework [Jain et al., 2014; Schneider and Uschmajew, 2015;

Olikier et al., 2022; 2024]

• Retraction-free methods [Schneider and Uschmajew, 2015; Olikier et al., 2023; 2024]

• Optimizing over a smooth parameterization

M

Rm×n
≤r R

ϕ
f̄ := f ◦ ϕ

f

min f̄ (Y) s.t. Y ∈ M

- LR factorization [Mishra et al. 2012; Levin et al. 2022]

M = Rm×r × Rn×r, ϕ(L,R) = LR⊤

- SVD-type lift [Mishra et al., 2014; Levin et al., 2023]
M = St(m, r)× Sym(r)× St(n, r), ϕ(U,S,V) = USV⊤

- Desingularization [Khrulkov and Oseledets, 2018; Rebjock and Boumal, 2024]

M =
{
(X,G) ∈ Rm×n × Gr(n,n − r) : XG = 0

}
, ϕ(X,G) = X
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A space-decoupling framework?

min
X∈Rm×n

f(X)

s. t. X ∈ Rm×n
≤r ∩H

How to tackle the coupled and non-smooth constraints?

Mh
ϕ

Rm×n
≤r ∩H

ϕ

rank information? h(X) = 0?

Goal

• optimality analysis
• smooth parametrization
• equivalence of two problems
• convergence analysis
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Orthogonally invariant functions and
optimality analysis



Orthogonal invariance “meets”low rank

Low-rank decomposition

• H = {X ∈ Rm×n : h(X) = 0} with orthogonally invariant h
• X ∈ Rm×n

s ∩H extracts low-rank (H) and orthogonally invariant (V)

X = H V⊤

Submanifold inherites orthogonal invariance

X = HV⊤, V⊤V = I

• natural embeddings is(·) : Rm×s −→ Rm×n, H 7−→ [H 0m×(n−s)]

• hs := h ◦ is is orthogonally invariant
• Hs :=

{
H∈Rm×s : hs(H) = 0

}
is an embedded submanifold of Rm×s

X ∈ H ⇐⇒ H ∈ Hs
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Space decoupling - level 1: tangent space

H = {X ∈ Rm×n : h(X) = 0} and h(XQ) = h(X) for Q ∈ O(n)

Definition

• Bouligand tangent cone:

TXX :=

{
η = lim

k→∞

(Xk − X)

tk
: Xk ∈ X , tk > 0 for all k, lim

k→∞
tk = 0

}
.

• Fréchet normal cone: NXX := (TXX )◦

Tangent space decoupling at X = HV⊤ ∈ H

TXH =
{

KV⊤ + BV⊤
⊥ : K ∈ THHs, B ∈ Rm×(n−s)

}
=(THHs)V⊤⊕

(
Rm×(n−s)

)
V⊤

⊥

TX
(
Rm×n
≤r ∩H

)
?
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Tangent cone and projection

Smooth layers

Rm×n
≤r ∩H =

s=r∪
s=0

(Rm×n
s ∩H): X = HV⊤ = UΣV⊤

• Rm×n
s ∩H is a smooth manifold with

TX
(
Rm×n

s ∩H
)
= TXRm×n

s ∩ TXH

=
{

KV⊤ + UJV⊤
⊥ : K ∈ THHs, J ∈ Rs×(n−s)

}
Closed-form characterization

TX
(
Rm×n

≤r ∩H
)
=

{
KV⊤ + UJV⊤

⊥ + U⊥RV⊤
⊥ : K ∈ THHs

J ∈ Rs×(n−s), R ∈ R(m−s)×(n−s), rank(R) ≤ r − s

}

Projection onto the tangent cone

PTX
(
Rm×n
≤r ∩H

)(E) = (PTHHs (EV))V⊤ + PUEPV⊥ + PRm×n
r−s

(PU⊥EPV⊥)

where PW := WW⊤
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Space decoupling - level 2: tangent cone

How orthogonally invariant affects the tangent cone X = UΣV⊤

U⊥

U

V⊤ V⊤
⊥

TXRm×n
≤r = Rm×sV⊤

+ URs×(n−s)V⊤
⊥

+ U⊥RV⊤
⊥

U⊥

U

V⊤ V⊤
⊥

(THHs)V⊤

TX(Rm×n
≤r ∩ H) = (THHs

)V⊤
+ URr×(n−r)V⊤

⊥

+ U⊥RV⊤
⊥

Intersection rules for tangent and normal cones

TX
(
Rm×n

≤r ∩H
)
= TXRm×n

≤r ∩TXH

NX
(
Rm×n

≤r ∩H
)
= NXRm×n

≤r ⊕NXH
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Optimality analysis

Definition
A point X ∈ Rm×n

≤r ∩H is stationary if −∇f(X) ∈ NX(Rm×n
≤r ∩H), or

equivalently, PTX(Rm×n
≤r ∩H)

(−∇f(X)) = 0

First-order optimality conditions

• Decompose X = UΣV⊤ = HV⊤ with rank(X) = s and H = UΣ

• Projected anti-gradient vanishes

(PTHHs (∇f(X)V))V⊤ + PU∇f(X)PV⊥ + PRm×n
r−s

(PU⊥∇f(X)PV⊥) = 0

• Stationarity at rank-deficient point X with s < r

−∇f(X) ∈ (NHHs)V⊤

which reduces to ∇f(X) = 0 when H = Rm×n
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A space-decoupling parameterization



Space decoupling - level 3: a smooth parametrization

Mh
ϕ

Rm×n
≤r ∩H

ϕ

rank information? h(X) = 0?

A space-decoupling parameterizationMh

• Parameterize the coupled and non-smooth Rm×n
≤r ∩H

Mh :=
{
(X,G) ∈ Rm×n × Gr(n,n − r) : XG = 0, h(X) = 0

}
where Gr(n,n − r) = {G ∈ Sym(n) : G2 = G, rank(G) = n − r}
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Space decoupling - level 3: a smooth parametrization

Mh
ϕ(X, G) := X

Rm×n
≤r ∩H

ϕ(X, G) := X

G ∈ Gr(n,n − r) h(X) = 0
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Mh is a smooth manifold embedded in Rm×n × Sym(n)
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Riemannian geometry

Represent (X,G) ∈ Mh by X = HV⊤ and G = I − VV⊤ with

H ∈ Hr and V ∈ St(n, r)

Tangent space at (X, G) ∈ Mh

T(X,G)Mh =
{(

KV⊤ + HV⊤
p ,−VpV⊤ − VV⊤

p

)
: K ∈ THHr, V⊤Vp = 0

}
Riemannian metric inherited from E := Rm×n × Sym(n)

Represent (ηi, ζi) ∈ T(X,G)Mh with (K2,Vp,2) (i = 1, 2)

〈(η1, ζ1), (η2, ζ2)〉ω = 〈K1,K2〉+ 〈Vp,1,Vp,2MH,ω〉

where MH,ω := 2ωI + H⊤H

Projection of (E, Z) ∈ E onto T(X,G)Mh

K̄ = PTHHr (EV) , V̄p = G(E⊤H − 2ωZV)M−1
H,ω

Complexity: O((m + n)r)
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Optimization via the parametrization



Recast the original constraint-coupled problem

Mh

Rm×n
≤r ∩H R

ϕ
f̄ := f ◦ ϕ

f

min
(X,G)∈Mh

f̄ (X,G)

min
X∈Rm×n

≤r ∩H
f(X)

Smooth parameterization

• ϕ : Mh → Rm×n
≤r ∩H : (X,G) 7→ X is a surjection

• Smooth Riemannian optimization problem overMh

- Riemannian derivatives
- Riemannian retractions
- Vector transports
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Space decoupling - level 4: optimization

Riemannian gradient ∇Mh f̄(X,G)

K̄ = PTHHr (∇f(X)V) , V̄p = G∇f(X)⊤HM−1
H,ω .

Riemannian Hessian ∇2
Mh f̄(X,G)[η, ζ]K̄ = ∇2

Hf(X)[η]V +
(
I − HM−1

H,ωH⊤)∇f(X)Vp

V̄p = G
(
−Vp[PNHHr(∇f(X)V)]⊤H + (∇2f(X)[η])⊤H +∇f(X)⊤WH,ωK

)
M−1

H,ω

First-order retraction

R(X,G)(η, ζ) := (RHr
H (K)(RSt

V (Vp))
⊤, I − RSt

V (Vp)(RSt
V (Vp))

⊤),

Second-order retraction

R(X,G) (η, ζ) := ([PHr ((X + η)W)]W⊤, I − WW⊤)

W = L(L⊤L)−
1
2 , L = V + Vp(I − K⊤HM−1

H,ω)

Vector transport K̄ = T H
K̃ (K) and V̄p = (I − ṼṼ⊤)T St

Ṽp
(Vp)

Optimization onMh is painless if the geometry of H is understood
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V (Vp)(RSt
V (Vp))

⊤),

Second-order retraction

R(X,G) (η, ζ) := ([PHr ((X + η)W)]W⊤, I − WW⊤)

W = L(L⊤L)−
1
2 , L = V + Vp(I − K⊤HM−1

H,ω)

Vector transport K̄ = T H
K̃ (K) and V̄p = (I − ṼṼ⊤)T St

Ṽp
(Vp)

Optimization onMh is painless if the geometry of H is understood
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Equivalence of problems

Mh

Rm×n
≤r ∩H R

ϕ
f̄ := f ◦ ϕ

f

min
(X,G)∈Mh

f̄ (X,G)

min
X∈Rm×n

≤r ∩H
f(X)

Proposition
The space-decoupling parametrizationMh of Rm×n

≤r ∩H satisfies

(i) “1⇒1” and “2⇒2” hold at (X,G) if and only if rank (X) = r.
(ii) “2⇒1” holds everywhere onMh.
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Convergence results

Important ingredients

• Mh is a complete manifold
• Compact sublevel sets of f =⇒ compact sublevel sets of f̄

General convergence theorem

• The sequence {(Xk,Gk)} generated by monotone algorithms has at
least one accumulation point.

• If the accumulation point (X∗,G∗) is second-order stationary onMh,
then X∗ is first-order stationary on Rm×n

≤r .

Specific algorithms

• RGD accumulates to first-order critical points
• RTR accumulates to second-order critical points

22



Numerical experiments



Low-rank approximation of spherical data

Approximate A ∈ H = Ob(m,n) with low-rank matrix [Chu et al., 2005 SIAMX]

min
X∈Rm×n

1

2
‖PΩ(X − A)‖2

s. t. rank(X) ≤ r
diag(XX⊤)− 1 = 0

min
x

f̄(x) := 1

2
‖PΩ(ϕ(x)− A)‖2F

s. t. x ∈ Mh

Methods based on Manopt v8.0

• Riemannian gradient descent method (RGD)
• Riemannian trust region method (RTR)
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Test on synthetic data: unbiased rank

Test with the unbiased rank parameter

• Synthetic A ∈ Rm×n
≤r ∩ Ob(m,n), (m,n) = (5000, 6000)

rank parameter r = r∗ = 6, oversampling factor OS = 5

24



Test on synthetic data: over-estimated rank

Test with over-estimated rank parameters

• Synthetic A ∈ Rm×n
≤r ∩ Ob(m,n), (m,n) = (5000, 6000)

true rank r∗ = 6, oversampling factor OS = 5

over-estimated rank parameters r = 7, 8, 9, 10 > r∗

Algorithm r = 7 r = 8 r = 9 r = 10

Test err. Time Test err. Time Test err. Time Test err. Time

Mh-RGD 1.97e−11 10.23 1.69e−10 11.22 1.49e−11 9.56 1.08e−9 7.30

Mh-RTR 2.81e−15 6.03 3.97e−15 15.34 2.41e−14 4.51 6.77e−14 17.08
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Low-rank approximation of graph similarity matrices

Measuring problem [Cason et al., 2013 LAA]

X ∈ H = SF(m,n) measures the node-to-node similarity between graphs

min
X∈Rm×n

− tr(X⊤L ◦ L(X))

s. t. rank(X) ≤ r
‖X‖2F − 1 = 0

min
x

− tr
(
ϕ(x)⊤L ◦ L(ϕ(x))

)
s. t. x ∈ Mh
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Test on low-rank solution

Problem setting

• GA of m = 2000 vertices: a single cycle
• GB of n = 3000 vertices: binomial random graph
• Solution of low rank: r∗ = rank(X∗) = 1

Iteration

R
el

at
iv

e 
er

ro
r

Iteration

R
el

at
iv

e 
er

ro
r

Left: test with the unbiased rank parameter r = r∗ = 1

Right: test with over-estimated rank parameters r = 10, 50, 100 > r∗
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Test on full-rank solution

Problem setting

• m = n to generate GA and GB: binomial random graphs
• Solution of full rank: r∗ = rank(X∗) = m

Numerical results of “Mh-RTR”for different m and r

Dimension m r = 10% × m r = 50% × m r = 75% × m r = 100% × m

Rel. err. Iter. Rel. err. Iter. Rel. err. Iter. Rel. err. Iter.

200 7.82e−7 38 1.25e−7 31 4.76e−8 26 1.43e−11 4

400 8.23e−7 32 1.85e−7 30 5.92e−8 26 1.07e−11 5

600 7.61e−8 39 5.73e−7 27 3.12e−7 28 8.71e−12 5

800 4.82e−7 37 5.79e−7 28 1.45e−7 21 9.31e−12 5

1000 9.98e−7 37 7.13e−7 31 3.85e−7 28 8.02e−12 5
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Low-rank semidefinite programming

Synchronization problem

• n cameras with a set of relative rotations {R̂ij : (i, j) ∈ E }
• reconstruct the absolute rotations {Ri}n

i=1 such that R̂ij ≈ RjR⊤
i

min
X∈Rm×n

〈C,XX⊤〉

s. t. rank(X) ≤ r
X ∈ H = St(3n, 3)n

min
x

〈C, ϕ(x)ϕ(x)⊤〉

s. t. x ∈ Mh

Reconstructed errors evaluated by ∥RiR⊤
j − R̂ij∥F

Errors on Standford bunny

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

Errors on Spotted cow

0 50 100 150 200 250 300 350
0

50

100

150

200

250

300

350

29



Visualization of the reconstruction

30



Model reduction of Markov processes

Problem formulation

• State space S = {s1, s2, . . . , sn} and Markov model P ∈ R|S|×|S|

• Hadamard parameterization, P = X � X, X ∈ Ob(|S| , |S|)

• Proposed approach

min
X∈R|S|×|S|

1

2
‖X � X − P̂‖2F

s. t. rank(X) ≤ r
diag(XX⊤)− 1 = 0

min
x

1

2
‖ϕ(x)� ϕ(x)− P̂‖2F

s. t. x ∈ Mh
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Test on the Manhattan transportation network

Problem setting

• Dataset of 1.1× 107 NYC Yellow cab trips
• Model the transportation dynamics as a Markov proces

P̂(i, j) =

∑T
t=1 I

(
spickupt = i, sdropofft = j

)
∑T

t I
(

spickupt = i
) , for i, j ∈ S,

State compression

r = 4 r = 5 r = 6 r = 7 32



Reinforcement learning

Agent

Environment

action
at ∼ π (·|st)

next state
st+1 ∼ P (·|st, at)

reward Rt

state
st

Markov decision process

• State space S , action space A, transition dynamics Pd ∈ R|S|×|A|×|S|

• Reward R ∈ R|S|×|A|, policy π ∈ R|S|×|A|

• Maximize J(π) := E[
∑∞

t=0 γ
tR(st, at) | s0 ∼ µ, π]
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Low-rank reinforcement learning

Low-rank strategy

• Hadamard parameterization π(X) := X � X, X ∈ Ob(|S| , |A|)

• Impose the rank constraint rank(X) ≤ r

min
X∈R|S|×|A|

− J(π(X))

s. t. rank(X) ≤ r,
diag(XX⊤)− 1 = 0.

min
x

− J(π(ϕ(x)))

s. t. x ∈ Mh

Compared methods

• Low-rank Riemannian policy gradient (LRRPG)
• Q-learning
• REINFORCE
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Test in two environments

Pendulum Mountain car

Parameter efficiency

Algorithm Pendulum Mountain car

Parameters ρstorage Reward Parameters ρstorage Reward

REINFORCE 86, 961 1.00 −0.94 582, 096 1.00 96.99

Q-learning 86, 961 1.00 −0.75 582, 096 1.00 83.95

LRRPG (r = 5) 10, 810 0.12 −0.73 15, 485 0.03 88.31

LRRPG (r = 10) 21, 620 0.25 −0.58 30, 970 0.05 86.44

LRRPG (r = 15) 32, 430 0.37 −0.83 46, 455 0.08 78.23
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Convergence curves

Q-learning REINFORCE LRRPG (r = 5) LRRPG (r = 15)
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Conclusion and perspectives

A space-decoupling framework: four levels

• Relation between rank and orthogonal invariance
• Tangent and normal cones to Rm×n

≤r ∩H

• Space-decoupling parametrizationMh and its geometry
• Riemannian optimization onMh

Future work

• Local convergence results onMh

• Bounded-rank optimization with additional constraints
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A unified analysis of tangent sets

Set Format First-order Second-order

M general Theorem 1 Theorem 1
M≤r matrix [Schneider-Uschmajew’15 SIOPT] Proposition 1
Mht

≤r hierarchical Tucker Proposition 2 Proposition 2
Mtc

≤r Tucker [Gao-Peng-Yuan’25 MP] Proposition 2
Mtt

≤r tensor train [Kutschan’18 LAA] Proposition 2
S≤r(n) matrix [Li-Xiu-Zhou’20 JOTA] Proposition 3
S+
≤r(n) matrix [Levin-Kileel-Boumal’25 MP] Proposition 4

Intersection of sets Structured set First-order Second-order

M∩K general (M,K) Theorem 2 Theorem 2
M≤r ∩H H is an affine manifold [Li-Luo’23 SIOPT] Appendix C.1
M≤r ∩H H is orthogonally invariant [Yang-Gao-Yuan’25] Appendix C.2
M≤r ∩H H is hyperbolic Appendix C.3 Appendix C.3
S≤r(n) ∩ U U = {X | ∥X∥2F = 1} Appendix D.1 Appendix D.1
S+
≤r(n) ∩ U U = {X | A(X) = b} [Levin-Kileel-Boumal’25 MP] Appendix D.2
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Thanks for your attention!

Email: yangyan@amss.ac.cn
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